Contr. Mineral. and Petrol. 34, 150–166 (1972) \circledcirc by Springer-Verlag 1972

Crystallization of Calc-Alkaline Andesite under Controlled High-Pressure Hydrous Conditions

TREVOR H. GREEN
School of Earth Sciences, Macquarie University, North Ryde, N.S.W., 2113 Australia
Received November 11, 1971

Table 1. Comparison of analysis of andesite 68-66 (Gill, 1970) with glass prepared for this experimental work

	68 - 66	Glass	Glass (recalculated
			to 100%, values based
			on chemical analyses)
SiO,	59.39	60.27a	60.24
TiO_2	0.68	0.67a	0.69
Al_2O_3	16.73	16.95a	16.98
Fe_2O_3	3.66	$0.87^{\rm b}$	0.88
FeO	2.61	$5.28^{\rm b}$	5.35
MnO	0.13	0.13 c	0.13
MgO	3.08	3.30a	3.14
CaO	7.12	7.34a	7.22
Na ₂ O	3.97	3.91b	3.91
K_2O	1.27	$1.26^{\rm b}$	1.26
P_2O_5	0.20	0.20c	0.20
Loss	0.55		
	99.39	100.18	100.00
Norms			s.ET
q	13.9	11.4	11.3
or	7.5	7.2	7.5
ab	33.6	33.0	33.1
an	24.1	25.1	25.0
di	7.9	8.2	8.0
hy	4.8	12.0	12.1
mt	5.3	1.3	1.3
il	1.3	1.5	1.3
ap	0.4	0.4	0.4

a Denotes content determined by electron microprobe analysis of glass fragments.

b Denotes content determined by chemical analysis (E. Kiss, A. N. U. analyst).

^c Denotes content not determined; presumed same as analyzed in natural rock.

the aid of a microsyringe. A pressure correction of -10% to the nominal pressure was applied (Green *et al.*, 1966). For runs at temperatures less than 1100° C Ag-Pd capsules were used. Generally run times were between 12-24 hours for temperatures less than 950° C and from 6-12 hours at $950-1100^{\circ}$ C. For temperatures above 1100° C Pt capsules were used and run times reduced to 1-4 hours ($<1300^{\circ}$ C) or to less than 1 hour ($>1300^{\circ}$ C).

At the conclusion of a run, the sample was examined optically and by X-ray diffraction. When crystal size was adequate, quantitative analyses of minerals present were obtained using an electron microprobe (A.R.L., EMX model) following the methods outlined by Sweatman and Long (1969) and Lovering and Ware (1970). The principal fractionation trends for differing pressures and water content were then determined, using these analyses.

Results

The results for the crystallization of the andesite glass from 9–36 kb for anhydrous conditions and 2, 5, and 10% by weight of water added are summarized in Figs. 1–4.